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1. Introduction

Abstract .
The effective Coriolis coupling matrix elements between ) ‘
In recent years there has been a strong interest in the

the intrinsic ground state and B~ and y-vibrational states . ) o
- — study of branching ratios of the Y -transitions from the

are calculated from a non-adiabatic, microscopic model. Within ) . '
i lowest, excited rotational bands of even, deformed nuclei.

the same model we consider the effective gyromagnetic tensor. ) ' o
Accurate measurements of the relative intensities of an

The matrix elements obtained are applied in a calculation of . . .. 35) .
increasing number of transitions have shown that in general

1)

Ml and E2 transition probabilities, A comparison is made with

a simple parametrization in terms of first order corrections

experimental data. The results are compared also with those . ) ' ‘ .
due to the rotation-vibration interaction between the ground

obtained in an adiabatic approximation, and it is shown that 4
state band and the excited band does not account for the observed

this is a good approximation only for the matrix elements of . . » . .
deviations from the Alaga-rules, Accordingly various versions of a

the inertial and gyromagnetic tensor between the ground state i ) . ‘ R
more complicated analysis, involving mostly the assumption of

and a vibrational state. o o -
an additional Coriolis coupling between the p -~ and Y -
vibrational band, have been applied by a number of authorsz’S).
In pgenerel this type of phenomenological analysis is based

on the assumption of a Hemiltonian

' — ) 2 -2
H{otal = Hl»‘{.— + L’;, (LLI*I) =W ) + sz I7 - [’7-2_ Ly, (1)

Here we have used the conventional notafions). The coeffici-

ents .h» and btz are operators acting on the intrinsic wave
function. In the present work we shall be concerned with the
calculation of the matrix elements of these operators from a
microscopic model. Obviously the operators bo and b:z
may be viewed as components of a half inverse inertial tensor

of the nucleus. We shall consider also the matrix elements of



the closely related gyromagnetic tensor, which is connected
from an experimental point of view to magnetic moments
and M1 transition probabilities,

Microscopic models for the Coriolis coupling between the

even-f‘vibrational states have been considered previously by

. 7 N
Pavlichenkov ), Bes et al.8), Marshalekgz and Kumar and
BapangerlO). In the works of Marshalek, and Kumar and Baranger,

the assumption of an adiabatic vibrational motion was utilized.
Marshalek treated only the coupling between the intrinsic
ground state and a vibrational state. In the approach of

Kumar and Baranger the Coriolis coupling is implicit in a
numerical treatment of the total Bohr Hamiltonianls’zs).

One important conclusion of the present work is the'
necessity of a non-adiabatic treatment of the vibrational
motion, if one wants to calculate the matrix elements of the
inertial and gyromagnetic tensor between the excited vibra-

tional states.

Pavliichenkov and Rés et al. both use a non-adiabatic formalism.

In the work of the latter authors the rotation-vibration inter-

action is considered, however, only in-so far as it influences the

electromagnetic transition probabilities between the Y -band
and the ground state band. -
Pavlichenkov's work is that previous investigation, which
is most closely related to the present one. This author con-
siders the matrix elements of the inertial tensor between the
ground state and the vibrational states as well as the diagonal

matrix elements between these states. The basic equations used

are very similar to those obtained in the present work, though

the method is somewhat different. However the numerical
calculations made by Pavlichenkov are restricted to the unrea-
listic case of the pure harmonic oscillator single particle
model.

In the present work all five independent matrix elements
of the inertial tensor between
the following intrinsic states are calculated from a non-adia-
batic, microscopic model: . |0) =z ground state, lﬁ) z single

phonon (3 -vibrational statet and lY ) and li;> z single

phonon Y -vibrational state with, reépecrively, K =% 2,

TBy definition the state ll@>, lr> , or |F> is taken to be

the lowest excited state with the appropriate quantum numbers

K5 independent of the degree of collectivity of this state.

(The ground state moment of inertia is treated as an empirical
parameter.) Thus for the first time a non-aidabatic microsco-
pic calculation is made of the non-diagonal matrix element of
the inertial tensor between the states |p> and ly> . The
matrix elements of the gyromagnetic tensor between the same
four states are also calculated.

The way this is done is simple in its principle. The basic
expression for the inertial tensor is just a generalization of

29) to a matrix form corresponding to the

the cranking formula
multi-dimensional intrinsic configuration space considered.
(Cf. egs. (23) and (27).) The foundation of this matrix

generalization of the cranking formula is established in



sects. 2 and 3. In sect. 4 we consider its implications for
the matrix elements of electromagnetic moments and derive the
expression for the gyromagnetic tensor.

The theory of sects. 2-4 is general. It applies in prin-
ciple to any deforméd model Hamiltonian chosen to represent the
energy of the nucleus in a configuration with a definite
orientation in space. In sect. 5 a definite model Hamiltonian
is chosen, namely, effectively, the Hamiltonian of the pairing
plus quadrupole model with a slight modification that will be
explained. In sect. 6 we derive the relevant approximative
expressions for the quantities considered from a perturbation
expansion in the residual interaction.

Details of our calculation are explained in sect. 7:

In sect. 8 we present our results and make a comparison with
empirical data. We calculate the matrix elements of bu and ijfz)
the values of B(M1l, 2> 2') between the three bands, and the
values of B(E2, Oo-» Zﬁor 2Y)' The comparison with an adiabatic
calculation is also made inmsect. 8.

In sect. 9 we draw the conclusion from our work. The
details of our graphical formulation of the perturbation

expansion in the residual interaction are given in four appendices.

2. Cranking formalism with intrinsic degrees of freedom

From the presence of regular rotational bands we expect
that the rotational part of the nuclear motion is fairly
well described in the cranking model approximation. We shall
apply in the present work a cranking formalism for a system with
intrinsic degrees of freedom, which is based on a generalization

of the variational approache) to the cranking model for a single

rotational band. The sdvantage of this
foundation of our theory will be explained later. (Cf. the
concluding remark of sect. 3.) In the present section we set
up the basic equations of the formalism.

As usual for the nuclei considered we agssume
that the rotating system has the intrinsic symmetry associated
with the subgpoupll) IL,of the group of rotations. Thus only
the two degrees of freedom corresponding to a vari;tion of a
unit vector along the symmetry axis on a hemisphere are rota-
tional ones.,

According to the cranking assumption we represent the
exact rotational stateS by rotating wave packets in the form
of many~body wave functions with a certain average orientation
and average angular momentum. Let a set qu, cv )lzg of
such wave packets represent d+1 intrinsic states of a
nucleus, which is oriented along the 3-axis of a given
Cartesian coordinate system and has an angular momentum };
with the components Iland EZ in this coordinate system. The
orientation and angular momentum are defined classically as
averages over the given wave packet. The intrinsic variables,
which distinguish the different states 125’ must commute by
definition with the unit operator and the components A} and ;&

of the quantal angular momentum ;1 . Thus, assuming that the

wave functions are normalized, we have

N A
Y. Ym = Opm ) (2)



2 R N
— M -~ (3)

where ;Z_L = (_:_]1) _j_z )) ;_E_LE (IUEZ) . We note that the egs.
(2) and (3) are invariant under arbitrary unitary transforma-
tions among the wave functions }Pg . Hence they describe in
reality a property of the (f£+1) -dimensional space spanned
by these wave functions.

In order to describe the lowest rotational bands in the
nuclear spectrum we select that space with the properties (2)

and (3), which has the smallest average expectation energy

1 4 .5
CE> =T ——— 2 U, H¥n . (%)
d+1 o =
We assume here that H is a deformed

ey

model Hamiltonian with Ilo -symmetry in the coordinate system
considered. Hereby the condition of minimal CE> defines
automatically a space of wave packets with orientation along
the 3-axis, so that no additional constraints are needed to
ensure the proper orientation.

The wave functions TPQ are determined thus as functions
of ;1 within an arbitrary, 1:_1 -dependent, unitary
transformation among them. These transformations will correspond
in the final formalism to canonical transformations, which
commute with the components of the angular momentum in the

laboratory system. A linear combination

has the expectation energy
: P eten Ho (IO
l—k"’H‘\", = Z C, Cm nm S

- h,m-o (6)

with

Hhm (;EL) E an(;l)* l“ ‘I-E'm C;L).
) (7)

Hence the matrix ijfl(El) may be taken as an effective
Hamiltonian for the model space of lowest rotational bands
considered. This Hamiltonian is a function of the classical
angular momentum cpmponentsizq and ;2, « A quantized model

is obtained by replacing these variables by the corresponding
differential operafors in the expression for a given matrix
element ELM(EQ) and letting the resulting operator matrix act
on a vector XE(@,ﬂlnd, which is a function of the Euler
angles of the';oordinaée system. If the minimum of <ED is
unique - which requires a suitable value of d - then the freedom
in the choice of the wave functions=’§@(§i)already mentioned can
be utilized to provide a representati;h of the group :Doo by
matrices acting on the vector 'X; y in terms of which the con-
straints on Xé(@,ﬁyq) associated with an intrinsic Deo -symmetry
of the rotating system may be imposed in the usual mannerﬁ),

More generally we have an effective matrix
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+
Q“"‘ (A-I—l)¢)—l?“bu) z qﬂ(ll) (-)(CP'{}'\P) E"‘(EL) 8

associated with any many-body operator _e(yﬂsﬂy)) which is a
Dw -invariant function of the Eulgr angles. in sect. 4 we
shall apply eq. (8) to Ml and E2 moment operators.

As in the case of a single intrinsic state we solve

the variational problem
d<E>= 0

under the constraints (2) and (3) by means of

Lagrangian multipliers. Hereby we obtain a set of coupled

equations
d
- -— — -3
‘_"q:"‘ = M-—% (g.L Qm;:’fmn + l:‘./ML_Mn) ] (10)
. , '
- 1 2 1 )
where v = = (LUM”,bumq) and W, W, , and l;z!
are Hermitean matrices. When the matrix elements w are

< mn

gufficiently small, we can make a perturbation expansion in these

quantities. We shall use an orthonormalized, multi-dimensional

Briopllin-Wigner scheme12). Thus let |E>IL@>, LE>' and g™
be eigenstates of H, chosen among the 32*1 lowest ones, let l£>
denote an eigenstate outside this set, and let §v|'€yh)- v

be the energies of the states lf>,lff>ﬁ ++s + We assume that

all eigenfunctions are chosen with the conventional phase, so

that  exp (- Iy _JZ ) in> = ]E>) where the bar denotes

time-reversal conjugation.Projecting eq. (10) on a wave function

[ we obtain, to first order in W, .,

. <itJ tmde o,
CHEL> = T =T (11)

Hereby eq. (2) is satisfied to second order by the choice

W e Kpl A ,9>: w
- = mp = = S (12
<ml-\£’n> = ma % Z. — - _ ) .( )
B pat (’:;"tp)<tz-€q
When the wave functions 1}2 are given, the matrix ji:m is

uniquely determined, e.g. by the equations obtained by pro-

Jecting eq. (10) on the wave functions Im> and the constraints
(2) and (3) in connection with eq. (10) ensure the Hermitecity

of ji!f - Thus eqs. (3), (11), and (12) determine an approximate
solution of the variational problem. Note that the solution (12)
is ambiguous within a left hand multiplication by an arbi-

trary unitary matrix. This ambiguity reflects the invariance

of the basic equations (2), (3), and (9) mentioned above. The
Hermitean expression (12) corresponds in the order considered

to the choice of the so-called 'midway-basis' in the perturbed

space47).

#hen the left hand side of eq. (3) is expanded to first
order in W,y by means of egs. (11) and (12) we obtain

# set of linear eqations, which can be written in the form




, . It is understood here that @, is a function of L.
iy | through eq. (13), and that fa may depend on the Euler angles.
c:;:fal 4 _"9;1»1 = 5 (‘5""\ Is ~ <nldgim> (13) Eqs. (13)-(17) are the basic equations that will be used

_ L (<h L;y}'{: lP>$£m -+ 'ff_)nep(P' ;"J"ﬂ {m))) in the following.
g . o The quantization of the classical equations leaves the
with o4 =1 or 2. Here order of the factors in products of the operators ;21,_£;,<P,
. 2 ﬁ}, and IP undetermined to a certain extend. A llermitean
f; : 2 2: :%%L%ﬁgiz 5 (14) r;bresentatign of Hermitean many-body operators is obtnined, if
t L ’ | we write, for example, the operators lﬂ»lz)?»éi and Y in exactly
where 10D is the ground state of J‘i , and i that order, in which they appear in the eqs ..- (16) and- 17y,
) | when the solution of eg. (13) is inserted. We shall sssume in
<n |53,i‘""> . Z <~nlJEIi?<j17&lm> N %'&Mémmj‘ (15) ‘ the following that this is the proper recipe. It will turn out
T v ¢ P T ; that it leads to a formal equivalence between a certain approxi-
é mation of our theory and & perturbation expansion in the
Note that <0/l 53;3[0> =0, From Egqs. (7), (8), (11), % Coriolis interaction as it is made e.r. in the work of P2s et
(12), (1l4), and (15), we get, respectively to second and first ; 31;8). (Sect. 4.)
order in Ynm, f
; 3. The inertial tensor
Hon (T) = dom e v 5 (3 2w, con, | |
- P In order to apply the formalism of sect. 1 in our sctual
“ LY:p <f’|(33;;’F éﬁg;)"1> 3’@1) ) (16) case we shall now suppose that the basic cquations (13)-(17)
PI2e o - i ‘ are applicable’in a slightly generalized situation. Thus we
assume that all the states |f> are even-K states, and that d
is chosen as a large number. (Formaslly we just include all
even-K states.) Making the perturbation expansion from these
Qnm (I_L) = <nlflmd> states we actually obtain an extremum of <E> rather then s
( LI H NI L0 pm Wt <P|§Lii><i'91"7>/) minimum. The present generalization corresponds closely to the
+ %; E.—E. * £:-E, generalization, which is involved when the usual cranking

(17) formula is applied to excited bands.
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The set of all even-K states contains the states |O>J 1p>,

y>, and Iy>. For brevity we shall name these states the states

U.

It will be cqnyenient to use the complex representation
of vectors in the 1-2-plane. Thus we consider vector components
like Ef = _L 1'1_;_2. As the metric tensor of the complex repre-
sentation, E'w: %_,QS«L-N, is different from the unit matrix,
it is adequate to distinguish between contravariant components,

E:E ; Q«(’;}s; ice.

I*:- %(11;_{.{1), In sect. 1 we have anticip_ated this notation.

like .I,.)nnd covariant components

Thus eqs. (14)=-(17) arc written already in an invariant form.
In eq. (13) o metrix multiplication by g*p must be inserted
on the right hand side.

As all odd-K states appear zcmong the states \£> , €q. (14)
becnmes the normal cranking formula for the ground state
noment of inertia. When the expression for the model Hamiltonian
'j_ includes a residual interaction, as we shnll assume below
contains the corresnonding contributions, which
are accounted for by the Thouless~Valatin expressioi?)(Cf. theorem

formula
1 in arpendix B. The Thouless-ValstinYcorresponds to a summation

(sect. 5), &

nf all 'RPA-type' diagrams. This gives exactly the expression
in eg. (14), when the effective RPA-interaction (appendix C)
for the frequency zero is inserted on the place of an interaction
line.)
From eqs. (13) and (16) we get an expression for the effec-

tive total Hoamiltonian of the form (1), namely

Hom (T.) & Sum Eun + 2:<nlh'§flm>ISI(L

N '

E,.. - i‘(n[h*A‘_l,\;+|m> + Z(nlhfélm>]_':1'£ (19)

=6,
_— “(&

wy

with

W o= Lot B

L"Z“"A*L’a)' (20)
The operators _l'lo and _‘g*z are proportional to the

o
components of the tensor h"{; . Thus

h o= 2h* = 2nt (21a)

/

= Rh¥F (21b)

We can neglect the second term in the third member of eq. (19),
, as these matrix elements are very small compared to the typical

(6} N )
If we let h "8 hUC [T

o,
denote the contributions to hE’ obtained in successive orders

separation of the energies L,

n
! of a&n expansion in the matrix elements of é‘yaf ) we pget after

some manipulations,

to) 1 L3
h " e 23 G ) (22a)

i

43"

‘q Wap -

(5*3'1(} . ;“}.(’,"5)) (251)
[ @ep = _1__ xqre rs
ot > = g 2 <nl (83,7637 + 53647

+ (537 - 83 )W 4 (8370 &3 ) Sy

~§3qr(égmm - 83y - $3E (53 - 537) ) lm),

(22¢)
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o
where products like S?Y_égni should be understood as operator

products in the space of even-f& states, and

<83y, im> = (nl(cﬂ 3“3;:)|m>

(my I ><L|7£:m> <nljﬁf2><2|7:lm>) (23)
£ EZ—Ev\ )

"'"G_EA}

Note that <D_Ié13 . ‘1_\/_\>:<Elé?_+lﬂ>) when E_n = E""‘ or

”(k = I'(M =0, Hence, if only matrix elements between

the states U  are considered, we can write

(1)0({5 - o« -
h z?‘ X 5o

~

5§36 (22b")

The four terms in eq (22¢), which contain differences
of the form ég - __(‘_ tend to cancel each other as
seen by writing down the explicit expressions by means of
eqs. (15) and (23). In addition each of them vanishes, if

g = _E_m . As a probably good approximation we can there-

“

fore neglect these contributions to the matrix elements between
the states U , which are fairly degenerate compared to an
effective energy of the odd- K excitations in the expression

(15). Thus we write
Wi . T Z (S“J =83 543 L5y ) (22¢")

In sect. 6 we shall derive explicit expressions for the
matrix elements of é?% between the states V' from a per-
turbation expansion of the pairing plus quadrupole model

Hamiltonian. From these matrix elements the corresponding matrix

- 15 -

elements of hm‘é are obtained immediately by means cof eq.
(22b'). In order to calculate the matrix elements of hmdé
we must, however, according to eq. (22c¢') know in principle
all matrix elements of %6;}“(& between the states 'U and an
arbitrary even-_"f_ state. To get a practically computable expression

we assume that the unknown matrix elements between the states U

and other even- _}'_(_ states can be simulated by writing (Sﬂ}.( in

the form
T > ( .
T = S ColdTas Il > (( By + B
Hermiean - e ("‘ ¢ (i_ ¢ #
(m.iuaaié/} (24)
—— + Z <(b\léﬂ3u(31\/> B BQ

(M\)

where {(U\> denotes the single phonon state in U with li:(“,
and §(" the annihilation operator of a corresponding harmonicr
oscill;‘cor quantum. Obviously the expression (24} has the known
matrix elements between the states U‘ . Using the eqs. (22c¢"')
and (2%#) it is trivial to derive expressions for the matrix ele-
ments of b(zm(s

htz)qfs

n -term gives a contribution to the effective ground

between these states. Note especially that

the

state moment of inertia '391({ From the egs. above we get

1 ] 1 8y 52
— < I = e— . Z <O‘ - o ‘ A
S A I To e
1 “) 2, “w 2 (25)
= —;\3—“ + 43 (<OIL~,OIE> q<0lh_2 l\r> )‘

Nl

We note that with the assumption (24) the relation
5«34.‘ = é?_+ applies generally. In this case the egs. (22a),
(22p"), and” (22¢') correspond simply to a Taylor expansion of

the inverse tensor in the expression
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o 1 g1 \ X -1 u(

h* = 1{“((41)4& + (9 )L), (26)
where (cf. eq.(ZS»‘

T T 80y, o

and the inverse tensor is defined by

I}

(28)
,éo((; .

-1 a&/ - ( RN
2 (37T, Z 3,037
Thus it is natural to interpret the operators yjﬁp as compo-
nents of a quantum mechanical inertial tensor.(The symmetry of
t%ﬁ_ implies a symmetry of the inverse tensor, only when the
different tensor components commute. This must be satisfied
in the adiabatic limit (see below), where the inertial tensor
is a function of the deformation coordinates alone, but it need
not be satisfied away from this 1imit.>
With respect to the assumption of a quadratic boson
expansion of the inertial tensor our approach is similar to that
of Pavlichenkovt. In Pavlichenkov's work the inertial tensor
is constructed by means of a Bogoliubov transformation, which
minimizes the expectation value of the operator Ei'-gg;gl in the

quasiparticle vacuum. Here the angular velocity is treated

(o)
=

' .
as a classical vector. The transformed operator H contains

a term of the form — Zzﬁﬁ ﬁiagyﬁgﬁ where the coefficients féﬁ
are operators. The operators \3,_ and /3++ do not commute in

this expression. By means of a usual RPA-linearizastion Pavlichen-

TNote, however, that we do not assume that the two-phonon states
are Stationary states of the system.

etal

ewntiall

- 17 -

kov obtains a boson expansion of ?Ee)where ~ as we have done
it here - he neglects the terms associated with non-collective

7)

bosons. In ref. terms of the type }gﬁv with (\*V are also
neglected. The coeficients of ]Zfﬁr a;e—not evéiuated directly
from the Bogoliubov transformatibd_and RPA-linearization. Instead
a variation of the Bethe-Salpeter equation is considered. From

the classical relation.;5 == afi//aﬁg- Pavlichenkov obtains an

: bl T . A _ O« ) o @)
e¥xpansion of _b"e similar to our expansion bé“ h (G b_ P*_Li_ f,

In the term fo§p he takes into account only the linear part
of the expression (24). Hereby he avoids the commutability
problem. We shall see, however, that sometimes the matrix elements
<p|343%JV> are comparable with the matrix elements <Y>|éyyplf§>,
It is therefore reasonable to include the products involving the
quadratic term in eq. (24) in the exoression for jﬁnfk In the
corresponding order of 53L@ the solution of the classical equation
then becomes ambiguous dueﬂto the non-commutability of the tensor
components ﬁiﬁ ) And some additional assumption,like e.g. the
intuitive eq. (26), is needed.

Contrary to the expression (24) the boson expansion written

7)

. . . t
in ref, contains also terms proportional to E(A IS-I« +B‘(‘ E{A

llowever their coeficients are not evaluated there. An attempt
made in connection with the present work to evaluate these

_\Qssuming hormonicity of the vibrations and - .
coeficientsYincluding only the leading term im a perturbation

expansion in the residusl interaction (cf. sect. 6) turned out
to give unphysical results. A reliable estimate requires that
onharmonicities of the vibrational modes are taken into account.
Therefore we have not included such terms in eq. (24). One
cannot, however, rule out the possibility that these terms may
contribute aignificantly to the matrix elaments {V“ Lhiﬁlgj}

+ ” o+
Thus in the adiabatic 1imit the terms EP Ef and é(@rﬁd;-*BYETJ
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must have equal coeficients.

In Pavlichenkovs construction a special significance is
assigned to a single intrinsic state, the vacuum of Bogoliubov
quasiparticles. Accordingly the fundamentsal step, the solution
of the linear equéiﬁon Eﬂ_=-35f/3w5 becomes generally ambi-
gous, because the Legrangean multipliers w™ , which are intro-
duced first as classical quantities, must be reinterpreted
later sffectively as operstors acting on the intrinsic part

of the rotor wodel wave function. With the present construction

all intrinsic states considered are treated on an equal footing.

Accordingly the Lagrangean multipliers w®™ are matrices (operators)

from the beginning, and the ambiguity just mentioned is

avoided. The cost is that the method must be based on the gene-
ralized variational principle (9), the Jjustification of which is
not clear.. Yet our gpproach is quasi-classical., The - less
serious - ambipuity associated with the non-commutability of

and Y

It turns out that with our generalized treatment of the

the operntors g}, Zl) , ﬁy persists.

Lagrangean multipliers 593 the intuitive equation (26) is only

approximately true. A more careful analysia of the genersl sig-

nificance of the neglected terms in eq. (22¢) remains to be

carried out.

(Sc rffﬂ‘

(o\')Hﬁ‘

‘W/

~19-

4, Matrix elements of electromagnetic moment operators

In the present formalism two sources of deviations

from the Alaga-rules are distinguished, namely :
1) 'Band mixing' of the even- K bands associated with off-
diagonal elements of the matrix !ﬂhm(lL) . 2) Mixing with the
odd- K bands resulting in the renormalization of the 'in-
trinsic' transition matrix elements, given to linear order in
gj_ by the egs. (13) and (17). The theory for the former
type of corrections is well known from the extensive literature
on the subject (see e.g. refs.l-S)) and shall not be considered
here. In the present section we shall discuss the corrections
of the latter type in the two cases of M1 and £2 moments.
In a calculation of matrix elements between the eigenstates
of Hnm(g;) the renormalized operators, including these
corrections, must be used.

The components «H(}p) of a spherical tensor in the
laboratory system are givene)in terms of the components J%(Av).

in the intrinsic system by
J
M) = 2 D (@) A ), (29)

We consider the renormalization, given in the notation of eq.

(17) by,
A0, I) = MOp, L) = AH0p, 0), (30)

Let us take first the magnetic moment



= -+ ~-1) S S (31)
(i‘: ~Pp (%P )~P R LRy
where ;2 is the total angular momentum of the protons,
3? (? ) the proton (neutron) gyromagnetic ratio, and ,ép (één)
the total proton (neutron) spin. From eqs. (17), (29), (30)

and (31), we get, after some trivial transformations,

- (AD In+1 "
s 5 2

< (32)
w2 DS (1) - ()

with
<nlpa DL LIPS Dy,

Tnlf Pl = Zi; Ei - Em = 0Lp '

(33a)

?«f = f*(s + ({)-;'ﬁ).f' (33b)

and

1 _ 1
Dl (984) = 7 Do (09 s

The tensor gaE is the effective gyromagnetic tensor. The
second term in eq. (32) gives, within the set 1r, a contribution

to the intrinsic magnetic moment of the Y’ ~state. If we define

- o1 -

<olp-1i><il Ty o>
T — Z '
L "3 E: - €,

) (35a)

] <nlpe = G L DU Jgimd
hid T = - £ (35b)
< 38"0 T % E.- €, )
and make an expansion in S?LP and gf of the tensor

using eqs. (13), (14), (15), (23), (33), and (35), we get for

the terms obtained in successive orders of this expansion

gm “ = L O"‘P/ (36a)

<h(<}“),,((sjm> = <n \éﬁ_muﬂ -+ <§gn_“—($>1‘ |m>/

(36b)

<hlg(zl Plwmd

]

S <n ;(53;} 33+ S (8a7 0 ) )Im>,
. )

(36c)

@xl-*

In analogy with eq. (22¢') we shall make the approximation

) ___!__ 0 Yp L (8
j"‘ L3 (3 ERRE ? )’) (37)
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"

. . m n
corresponding to the assumptions —éﬂ«} X 53%’ and 5_%,;(5

]

90.(1,) (6D, (Yoo v V)

v -
n T i -
o (é%(_i‘)(_&)) ) and we shall suppose, when using eq. (37), that
(U] - . .

has a boson expan81on similar to eq. (2u4). 2 2
?‘i@ ~+ VZLI (D((AZ Y+++D(,\(-z) Y_-) (39)

We note that <OI j lo) (0] by definition. The expres- L -
sion (35a) is 'simply the  cranking formula — V_Z (D{fq I, - (4( o Lo >< Y, - _+)>,
for the collective gyromagnetic ra‘riol3). An expression . caqn

where, in the limit of vanishing operators 6/‘};

for the M1 transition matrix elements between the Y - and the - r

ground state band, which is identical with that obtained from

eq. (32) ywith th roximatio ~ gt e g P yas
q wi e approximation 3 J {5 (40)

<l T 1< Ta Im>
Y., = 2 7
> " (EC—CH)<t:‘Lmj

derived by Bes et a1.8) by assuming that the Coriolis interaction
VC" == ll'- :)_,_ /3] acts between the even- and odd*E bands, and

treating this interaction in the approximation of first order
The first two terms within the outer parentheses in eq. (39)
perturbation theory. One will easily see that these two approx- .
are seen to involve simply a renormalization of the intpinsic
imations are generally equivalent, provided terms correspondin;_t to )
1 mat»ix elements <WICJ‘,\!M>- From eqs. (23), (27), and (40)
those included in ‘}u rt are taken into account in the second ! '
- the correction to the matrix element <n | Qt‘ lm> is expected 1O

term in eq. (32).
be roughly proportional to the corresponding matrix element of

For the quadrupole moment @f“ we consider here only the p

ol ,\3«(5 . Within the set U  the third term in eq. (39)

col U _
collective part (x , which 1is given by eq. (29) with Qf: O de

» contributes only to the intraband matrix elements in the | -
where Q is consfdnt. If we insert the expression for QF‘ into
band. For an arbitrary matrix element of the quadrupole
eq. (8), we get a contribution to BQ (I ) in second order of .
, ; ~> tensor one can now prove the followingf: If one adds t©o
the expansion in W, , Wwhen we write the operators (\AO (CP & L{) ! f—

- the matrix element between pure rotational state the band mixing
and 4~ i in the order suggested by the form of the right hand 1)
contribution obtained in the Lipas approximation™’ with the
ide in this equation. This contribution is associated with ) o .
reduced coupling matrix element given by the term b  ~F an

the (classically vanishing) operators

the expansion of b & plus the contribution given by eqS-
, ‘ 2 o7 T T :D2 ) (38) and (40), then the result is identical with that obtained

- T - 5 (Do ~¢ I, + 1, o (38) .
'L‘:‘ DFO ks < ( f‘ r - C) .(‘:‘ by a second order perturbation treatment of _‘flcw . Especlally

we get therefore in the approximation to our equations just

and can be written 8)

described the same expression as obtained by Bes et al.
-

ty corresponding relation holds also if the non-collective part
of the quadrupole tensor is included in the renormahzatlon"

Xi
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for the E2 transition probabilities between the y- and
the ground state band. In the formalism of these author—; the
renormalization of the matrix element <O(Q!l lY) by the
contribution (39) is associated with the parameter \3, nd
it amounts accordlng to their calculations to a reduction by
about 1%. Thus it is practically negligible.

The present discussion shows, however, that a per-
turbation treatment of \/CM_ is equivalent to our
theory in the approximati;\, where second order terms like

'ﬂmﬂ} and g(l) e are neglecfed* We expect a priori this
o R -

*With certain special eadditional assumptions a perturbation
treatment of the particle plus rotor Hamiltonian, including the
2
recoil term _\_/,,e(o;f = gl /273 cen be shown
. . . hi"ﬁ .
to give a contribution to with the product structure

of eq. (22¢")14),

to be a good approximation for the matrix elements between
the ground state and the states l(‘4>) but not for the matrix
elements between these states. Thus let us consider the Taylor

«n . 15,25)
Wt )

expansion of the tensor in the Bohr model

Y2 g (1)

1 o 1 2356 (p
T c—— e — B | ( ej)
T 2‘ - f
23 N T ap, e~ Cr .

Ly (ZMM(@") 2% (e7) 4., 823t;é(g"'4)>
TN oy © opeops

o ((‘(; B go -3
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restriction of the Bohr
Here /‘35% denotes the inertial tensor to the 1-2-plane,
which can be expressed as a D,,o -invariant tensor function of
is the equilibrium

the deformations (o and [512) [5:\3

value of _ﬁ(‘" (_/_3:2 - O) and

(17% z ,21_ Fpan () (42)

In the case of harmonic vibrations quantities of the form
<@lbkﬁ'?> —5{,4‘,(0]_}1?(0) risesggom the third term in eq. (u41l),
In this term the second derivative of 3;0 corresponds to

a contribution of the type b_m% while the product of first
derivatives corresponds to a contribution of the type b(lm’(g-
With the hydrodynamical expression - 15) for 3301‘}((3) these terms

have a comparable size.

5. Hamiltonian
——— e

We assume now that the deformed model Hamiltonian H has

the form

H = H, + H., +4E, (43)

where t_lo is the Hamiltonian of non-interacting Bogoliubov

quasiparticles, H..q

a residual interaction, and A& a
constant term, included in order to give the ground state of

H the energy zero. We write

H - ZE:b?b‘ (u1)




where _k_?l

is the annihilation operator of a quasiparticle, and

EL the corresponding quasiparticle energy.‘Ho is supposed

to be given by the standard Nilsson + BCS theory with a few

modifications, which will be explained in sect. 7. The residual

interaction is written in the form

H

res

LKA&bb (bxb 6<o|bb |o>) (45)

- :Z: v
L

where the symbol _@L - written with a Greek index - denotes

either an annihilation or a creation operator. The summation

in eq. (45) includes all combinations of such operators, and

. . . L C
the interaction matrix element V,, 18 understood to Lte anti-

s

symmetric in all its indices. The form of the expression (u3)

ensures that H,h does not contribute to the average single

particle and pairing fields in the ground state [O),

In terms of fjo and H,es we can define the renormalized

effective interaction Hc#f for the Random Phase approximation

(RPA). The formal definition is given in appendix C. We

assume that an effective interaction, which accounts for the

properties

of the states Qj; is energy independent and has

the form of the pairing plus quadrupole force. In the notation

explained at the end of appendix C it is written thus as

Heﬂf =

-1
Z <[u-0»2 )((KQ('A
(46)

+ G (PP + P RY) + @“(P; P.«P.RS)).

Y
Weﬁﬂ . The symbol

jv/// defined in

A

C}f‘ denotes a modified quadrupole moment,

analogy with the modified octupole moment introduced
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in ref.IS))

1

(:) ?;<[] 2 (f)|J> afaj s (47)
ST lét ¢

A
where %42F([:) is a spherical harmonic polynomium of the
- A
set of stretched spatial coordinates !~ defined by the identity

N { ° A2 8
Vosc (}:) = 2.. M—U\)‘z: , (u )

A . .
Here Léﬁ,([) denotes the oscillator part of the Nilss
. . 3
potential, tl is the nucleon mass, and oo (uJ 2SN ) where
. 0
a@ and W, are the oscillator frequencies. Jz)and In are

the monopole pair annihilation moments,

2: C« a;

p 5o ) (49a)

Pr«_n}ns

P

i

Z a;‘a; ) (438b)
" (>0
heulfrons

1

P

In egs. (47) and (49) the operators {; are annihilation
operators of nucleons. The quantities %?4) QP ; and A§n are
interaction constants. We demand that the spurious modes
associated with particle number conservation shall be elimi-

7)

nated in the RPA. This impliesl the BCS relations

= 7 (50a)

Fr‘;{ons
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2

G, = R (s0b)
I ,E;

neutronms

We define the normalized oscillating field associated with

an excited state [n> by

F.o: T 7; Vi <nlbbylo> b by, (s1)
\k(/\

“he RPA equations can be expressed as equations for the energy

En and field _E;.(See appendix C.) Writing eq. (u4) in

the short hand form

He” = - é ?P; '*P (J:QF (52)

we have
— =~ t + o “ (53)
'Ln = L{,_ G ( F“ ) C)P ) t " ) '{/(’ Q,J )
'2
dG(F Fl w)
t, - _ /] oy 2D _
G Lnfl an,th) = - 1) (54

d_‘/k) ::,:JJE

wiere, for arbitrary field operators A anda E%;
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c:

! 0
G(Q,B,w) : ;_ Z<Q:j BLJ + & )Lv’.(B)‘v’).(ss)
- d

Ei+E - w Ei+E +w

By a field operator we understand here an operator A with

the structure

Q = Z du( b‘_ BK + COF‘IS'{‘C\I«\’bI (bc)

™

where . = ~0x, are constants. (In the present paper the
constanf term in eq. (56) =  which may have AN
infinite value - is always insignificant. Linear
relations between field operators, like eqs. (47), (u49),

(51), and (53), are understood as relations modulo a constant.)

The component (Qg is defined by

Ay = oy, Lo, AT) (s7)

1 3
6. Matrix elements of é:kp and 9( ; e

fq

From eqs. (23), (35b), and (36b), it is seen that a cal-
culation of the matrix elements <Ql§ﬁ&ﬁtﬂ>and ‘QﬂgTGM)involves

an evaluation of expressions with the structure

1 .
< h’ HL{_-_; lm> (58)




- 30- M - 31 -
This is a special case within a class of matrix elements, which . .
can be expressed as sums of Feynmann diagrams according to . ~ ~
certain simple rules. The general theorems are proved in | [H"' A ] T A= A , (60)
appendix B. f
Co ~

We use the theorems 2 and 3, and neglect all diagrams, For the commutator [9«_@.] the sum of frequencies w, + w, is
which contain residual interaction lines. Hereby we obtain used in this definition. Note that this commutator is a field
the graphical expressions shown in fig. 1. These expressions operator itself. Our numerical calculation was based on the
involve the oscillating fields of the excited states, defined egs. (59). (For further details, see sect. 7.)
in eq. (51). The precise rules for the interpretation of the Expressions for the matrix elements of 3(_2& are
diagrams are given in appendix A. In the evaluation of the obtained by replacing _:_]9( by ((*«5-3;;3;_()/? in the egs.
expressions in fig. 1 we can take the advantage of the fact (59), Like Bes ﬂ_a}_._s) we neglect_the spin terms in eq. (31).
that in both expressions all possible time orders of the Then we get
vertices appear. From a theorem, proved in appendix D, we get w g ’ o o o

— c}gx = _ﬁ—('ﬁﬂ}xl - 8% )) (61)
\’Oléﬂﬂmln> = G(lq_)fﬂm FY1E,) | B
- -3 & ‘ where the matrix elements of c\t}‘m ¢ are obtained by a
"'G(J—{Q,Ljﬁ,FJ],O)‘ (59a) SV o y
- | summation of the proton disgrams in fig. 1.
P /—? Jj (Bes et al, includid in their calculation only the diagrams
<m | 5“3,,",‘ lh> = G( me) [jﬂ_;[j/h F, 1]+ [Uﬂ‘ L3, F:]]/Em) i in fig. la with _}'__‘, as the downmost or upmost vertex.)

When the spin terms are neglected, and we neglect also

~+ G ( J_&’ []_‘m) [J(':‘! an” + []@'[ CM) an]]) En _ Em) the contribution from the second term in eq. (32), the intrinsic
: gyromagnetic ratio of the ~state is given by

P ?_K /

~ ] AT
* 6 (2, Ry, 00, B[00 TF, B 0), oo

2 Sl > <yl dely> ] G(P)'(F* Ftoe ) (62)
Jx 2 R v S/,
~
Here the operator _@ is defined by the following equation for
() .
a field operator Q, which appears in a diagram with the asso- where G© (F‘_y*, Frf, EY) is the proton contribution to the deri-

ciated frequency v, vative in eq. (54),

We shall discuss now the relation between the equations
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(59) and those obtained from an adiabatic treatmenfle)

of
the effective Hamiltonian defined in sect. 5. Thus we consi-

der a variation of the quasiparticle Hamiltonian

Ho = 12 (p,0,2)

o

= H, = Z Qg = (PHeP)da, -(P1P)as,
(S (63)
N]’d&lo Nn A_A.V‘

- Xt

= Ho — ZF_ Ql’ c({}t,

under the constraint of conservation of the average of the
particle numbers lgf and ﬁgn in the quasiparticle vacuum. The
normal modes of adiabatic harmonic vibrations in the coor-

dinates 4, are derived from the restoring force matrix

N ~ 1+ .’\1- ’)‘1_ , ,j\«r‘r)f )
U, - 6(Qp,0, 0) = ZGG, 600 ). ] 000
P ) 1 r .
and the mass tensor, given by the cranking formula

4 TRV S
M, = = 6"a, @ 0), (61)

The condition of particle number conservation gives the linear

constraints
"\,*_ ‘\.+ , _ A
2; G(N,,,CJF ,O)dch, = [,ZG(N“’&P e )doh) O (gs)

The coupling constants }} associated with the variables

v
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Qh“ ) -éP , and _A_“)are equal to 1/,4) —GP) and G, )
rgébectively. These are the only oneé: which contribute to the
sum in eq. (63), due to the constraints (65). For given values
of the coordinates 9p the adiabsatic inertial tensor is
given by B
(o) -

T (9 3 G(U_MJ,SIO)HO:H,%)_ (66)
The difference tensor éylz (a) can be defined in this case
a8 ‘gix(?) - <bvl§§&?)|0v> where [0,> is. the vacuum of vibra-
tional q;anta. -

Now the cranking formula (€6) corresponds to the
diagrams in fig. 2. We get the derivative (21:)//quydiw by
inserting a vertex with the field -- aﬂ“)(‘}) /Z"C“, = g; and
zero frequency into an arbitrary particle line-;ifh ;n arbi-
trary time position relative to the original vertices and
making a summation over all diagrams thus obtained. (Appendix
D.) Hence the derivative is given simply by the

diagrams in fig. la with EV‘ =0

~o
) f; = CQP' Repeating

the argument we see that a similar relation exists between the

e

Aq (U)
expression in fig. 1lb. Thus from a Taylor expansion of JDG (1)

: . . <)
second derivative (D*’?‘ //QQP a?ar)di?o and the

it is seen, that if is replaced by the adiabatic oscillating

-~

field
Yy X
Foo= % (dqﬁ) (QF (67)

where Ciqg is the zéro-point amplitude of 9, in the

normal mode ' then the egs. (59) give in the limit Ejn'* o8
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(v)
the matrix elements of 3(\\4:(: (q,) in the approximation, where

terms in the Taylor expansion of higher than.quadratic order
are neglected.

A

The fields —-FI’ and F are both proportional to Q -2,

and the normallzatlons c01nc1de asymptotically in the limit

gY - (O, For the B -vibrations the relation is more in-

volved: The field f contains two terms of the asymptotic

-2
form A EL*(P-P') in the 1limit Ey—0. Here P represents
Llep L7F =1 €~

-PP or »Ph , and /A is a constant. The field F(& is
- A - =

asymptotically identical with the fleld -(s obtained by

replacing this term by (/\/'ZA)C N . The fields __F,; and

E& give identical matrix elements <o|53_'3'-|p) and <plc§"&__rr> when
inserted into the eqs. (59), but the matrix elements <r51<\13+- \[5>
differ by a term (/\ /A 3 (3'}:0_)/94 )A‘1 o when
calculated respectively from l‘E and f(: . The singularity of
this term for _t:(\ » 0 is seen to be strénger than the normal
singularity of the order _5(51 associated with the increase of
the zero-points amplitudes with decreasing energy.

Thus for all matrix elements except i@lébﬁ,-lp) the eqs.
(583), (54), and (59) give the adiabatic result in the limit
of vanishing phonon energies. The divergence of the matrix
element (plé“&,-iﬁ) in this limit has to do with the way
particle number conservation i% treated in the Bes theory
7)

for the (5 —vibz‘a‘cions1

,» which is applied here in its

essential traits. This theory ensures <0Wl($>:0 but not <piNig>
<‘(3I NI_@_}'—— <oIN10)
contains a divergent term similar to the term in <£s(5‘3+-l(5>

- [( o
just considered, namely (/\Q/A)E 3(3N o)/aﬂ),q,o where N()

denotes the expectation value of _N_ in the ground state of
19)

COINI0Y ., In fact the difference

Hw)(ﬁ). In the theory of Soloviev the chemical potential
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is adjusted for the single phonon state, so that <(5/Nl($’> = <o |_':“°>
is satisfied. Hereby, however, the relation <0lNl(&> O is

destroyedf Soloviev found that for the actual energies __Ep

tone could note in this connection that a theory, where both

<oINip> = 0 and <BINIRD> = 6INI0> might be constructed
by treating the chemical potential as a matrix analogous to the

. «
matrices Wz, of sect. 2.

the difference <[5‘_@l"$> -~ <oINI6D> is usually negligible.
Accordingly we as:sume.in the present work that the Beés
theory is sufficiently accurate.

The formula for the matrix elements (0|§3~¢'(‘4> obtained
by Pavlicherkov corresponds to eq. (59a) with §P= o, i.e.
to the adiabatic formula with the non-adiabafic—r.xormalizarion

of FC' His expression for the matrix elements <Q5Lpfkﬁlc> is
in principle equivalent to eq. (59b). In both cases Pavlichen-
kov makes an analytic approximation, where he utilizes the
oscillator

simple properties of the anisotropic

single particle potential.

7. Details of the calculation

In the Nilsson calculation we used the standard parameters
1
(j) = L‘l1 /F]3 Mev) 5}; = l:Sh = 0'063;) {AP = 0-6; and
(Mh = 0.42.

No ¢, ~term was included, and the Nilsson

Hamiltonian was diagonalized within each major shell using the
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20)
1)

optimally stretched oscillator basis . The quadrupole de-

formations 6 were taken from ref.2 . Values of the gap

parameters ¢g and é"-were calculated from the empirical
masse522) by means_gf a quadratic fit to five nuclei with
successive numbers of protons (neutrons), equally distributed
around the even nucleus considered, and the chemical poten-
tials were determined so as to satisfy <1yg>=_g and <N,>= N
in the quasiparticle vacuum.

We included in the calculation the proton levels in the

major shells with»&.= 3,4, and 5, and those originating in the
15

) 2 )

(8)%}), For the neutrons the analogous levels in the major

spherical subshells with (L\I,J) = (6,12——%— ;)’ (7 and

shells with N=4Y-9 were taken into account. All these levels
are situated within an interval of the size 3:&; around the
Fermi level. Only the A@j() matrix elements of J? and ?R
were included. Including in a test case all the matrix élements
or single particle levels within an interval of the order
513 we found that the matrix elements of étﬂp were changped
by X 10%. In the vicinity of the Fermi level we adjusted the
Nilsson levels in accordance with the reduced empirical
energies compiled in ref.23).

Given the quasiparticle energies Ei)fhe pairing interaction
strengths fEP and “gn are determined by eq. (50). The constants
—Xﬁ of the quadrupole interaction were chosen for each nucleus

28)

such that the experimental phonon energies were ' reprocduced.

In a few cases we had to estimate the energy lgﬁ' These are:
’ééE.— ' E(,, = 7,25 MeV, lgé_l“Os: 1'1 HeV Both values
were chosen on the basis of the systematics in neighbouring

nuclei. In the adiabatic calculation X; and th were

determined from the adiabatic equations.
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The cranking model moment of inertia n; was taken as an
empirical parameter, derived by means of eq. (25) from the
effective moment of inertia ?;4f of the intrinsic ground
state. The latter quantity was obtained by fitting the two
lowest excited levels in the ground state band by the expres-
sion _E'I =(1/2 39” )E(If’f) +g(£(3+1))2. The collective gyro-
magnetic—;atio 3&~ was derived in the analogous way from the
empirical magnet}b moments of the lowest 2% state compiled in
ref.2u).

Thus our calculation contains no adjustable parameters.

In vef.le) we gave for the case of the octupole force an
argument for the assumption, that when the fields of the
interaction are expressed in terms of the stretched coordinates
as in eq. (47), then the coupling constant associated
with different projections of the phonon angular momentum
should be approximately equal with a small deformation
dependent correction term. The formula corresponding to eq.
(2.20) in the quoted ref. has the following form for the quadru-
pole interaction,

P -t
Xe = ?;(q'*wzr 5 ﬁ>) (68)

A

princ‘l‘Icc\“)‘.

vhere p is a constant. From fig. 3 eq. (68) is seen to re-
producé*relarively well the qualitative situation, like in the
octupole case, although it is not sufficiently accurate for the
purpose of quantitative predictions. The largest derivations
from eq. (68) are seen to appear for the constant }% . Probably

this has to do with the admixtures of pairing vibrations in

the K =0O quadrupole vibrational mode.

13>
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For the numerical evaluation of the expressions (59)
we constructed a general algorithm, which calculates the com-
ponents of the field C91£§;] from those of fﬁ and A, for a given
frequency of the{tdd 8 . This method is especially powerful for
the sum of four-vertex diagrams in fig. 1b. Thus it is seen,
that by means of eq. (59b) the sum, according to fig. 1lb, over
four independent sets of the single particle quantum numbers

and 72 different diagramsT is reduced to a few successive

tsome of these can be combined to a single termn.

applications of the algorithm just mentioned, and a trivial
algorithm for the G-function (55). The algorithm for £.91.Eiz]
involves only three nested loops through the single particle
quantum numbers.

It appeared in the calculations that the second and third
term in eq. (59b) always have the same sign, which is the
opposite of that of the first term. The total value of the

expression is a relatively small difference between these terms.

8. Results and discussion

We have calculated the matrix elements of é?ﬂi between

the states U for 15 even isotopes of the elements Sp — Os.
The results are shown in table 1.
The quantity shown in column 3 of the table is the reduced

A-parameter 1/23 obtained from the empirical value in column

frete)

fued

SU—

_39_

2 by means of eq. (25). The reduction is seen to amount to
about 10%. Obviously, it is the quantity } rather than ye“
which is relevant for a comparison with empirical data of
theoretical cranking model calculations of the ground state
moment of inertia. The 10% difference between # and 76”
is significant for an empirical test of corrections to the

simple cranking model with noninteracting quasiparticles,

(Cf. e. g. rer, 26).)

For a few selected nuclei we have made an adiabatic cal-

culation as described in sect. 6T. It is seen that the

tNote that the coordinates Ap and 4, are treated here as

dynamical variables on an equal footing with the coordinate (3
This corresponds to the way the pairing field is treated in

the non-adiabatic case. B&s has given in the appendix of ref.

27)

a different formalism, where AP and Ar, are related to

3 by the condition of static self-consistency of the

pairing field. Both

En 0,

§chemes are equivalent in the limit

but the present one yields a closer approximation

to the RPA for finite energies,

adiabatic results are close to the non-adiabatic ones for the
matrix elements <Of§3QJsz while for the matrix elements
<p4lét%ﬁllﬁ> there are iérge deviations between the two
approximations, both with respect to the magnitude and the
sign.

we have

From the non-adiabatic matrix elements of ét&ﬁ

¥ .
calculated the matrix elements of the tensor hli using the
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‘approximation for b‘”f"_{} described in sect. 3. As the size
of matrix element <(Ml53 |_\j> can be comparable to that of
the matrix elements <Olé>13» !\1>) we have included in the
approximation for bmﬁ@ the products of the quadratic term

in eq. (24). The results are shown in figs. u4-8. (Solid lines)

In all the figs. we show also the matrix elements of the term

le ¢

(dashed lines). As mentioned above this corresponds

to the approximation obtained by treating the

Coriolis force by second order perturbation theory. The ELZW(}
term is seen to give appreciable corrections in all cases,
except for the major part of the matrix elements <olh_, 'Y>.
The off-diagonal matrix elements <Olb° ,(5>,<01£)_Z'Y>; ana
<f,t_lz_zlr> are compared to experimental data ir{ figs. u-—s.
Av»simultraneous fit of these three matrix elements to the

empirical EZX branching ratios was made for three nuclei:

: 182-1%
tsséd 3) and W 4). Due to the comment given larepd®?

184 .
to the W -data we have not, however, included these data

. . S8 162 L.
in figs. 4-6. The values for ' Gd and W are indicated
by crosses. Rud et. al.2) made an analysis of B(EZ) -ratios

. 152 IS9-15¢, |
between the (5- and ground state bands in S and G in

terms of two parameters associated with the matrix elements
<olholp> and ((3”,_2)},) The values obtained by this analysis
are shown as triangles. The circles in figs. 4 and & represent

matrix elements derived from reported values of the Lipas

parameter ._2031-310 or 30,35-39) *. Here only data, from

22

tRer.3%)

contains an extensive compilation of previous data
. 152 16 . .
for the nuclei Sm- "€ as well as data published later in

a number of individual papers from the Nashville group.
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which the matrix element of b“f» could be derived by means
of an experimentally known B(E-Z, O — 2[‘, or )') have been
taken into account. For go we have inclL;ded—only such nuclei,
where the same value gives a consistent fit to several branching
ratios. For 2, we have used in all cases the value, which
fits the ratio E(EZ, 3Y - 2, )/ E(E—Z, 3, =Y, )

The agreement of the ﬁcalculated values ofﬂ <o |b‘,\(5) and

(Olh_lfr> with the experimental data (figs. 4% and 5) is

. M . . . :
satisfactory. The __1'\ r -contribution is generally the main

Lju)q(;

contribution, but we note that the -term tends to
improve the fit.

The empirical knowledge of the matrix element <[Sl_"_w-z |r>
is rather scarce and uncertain. In addition to the evidence
obtained from the works mentioned above we can obtain
an upper limit for this matrix element in the nucleus '70\/’3
from the fact that here the 2% members of the [5-— and the
\(~ band are separated only by 7 keV. This inhibits a value of

<plh,l y> larger than 0,5 keV (Square point in fig. 6).

Our theory gives for most of the nuclei a value of <rlh, lr>

between 0 and 1 keV. Thus the large values obtained by Rud

152

et al. for S and 'sqGo( are definitely outside the

scope of the model. With respect to these numbers it

should be noted that they were obtained by an analysis which

included only transitions between the - and the ground state
band. A similar analysissS)
t

of the Y~ band does not give the

same result’. It seems therefore that a coupling to higher

1’Fur‘rhermor‘e the formalism of ref.2) may be criticized, cf.

ref.S).
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excited states in the spectrum must be responsible for part

of the effect considered by Rud et al. The experimental matrix
element in 'gZVV is about four times larger than the calcu-
lated value. However, the order of magnitude is here in
agreement with the ‘theretical value.

The calculated differences <(4[kb'ff> —<olhodo> i e,
the change éQe of the éjparamet;; from the ground state band
to an excited band are displayed in figs. 7 and 8.

The experimental values in fig., 7 were derived from an
analysis of the excitation energies in the (>~ band similar
to that made for the ground state band (sect. 7). Only nuclei
where at least three members of the f’_ band are known, are
included. The systematic behaviour of the empirical égﬁ
through the mass region is seen to be reproduced to some extend.
The variation of the calculated values, which is similar
to that of the empirical data, originates essentially in the
variation of the matrix element <73|k“)|/5> (Cf,
the dashed curve.) When the _bt) term is included, the
theoretical curve is pushed toward the positive side. This
seems not to agree with the data, which have about an equal
variation from zero in the positive and negative direction.
For comparison we show in fig. 7 the results obtained by

7)

Pavlichenkov on the basis of the harmonic oscillator single
particle model.

The calculated values of _§9r exhibit a much smoother
behaviour than the ﬂéfQF due to the smaller variation of the
matrix elements <Ylb:wr>_ We have omitted in fig. 8 the com-
psrison with empigzéal data. One will understand the reason

by considering the plot in fig. 9. Here four Y — bands known

with at least four levels are shown in a plot of (EI"EI-1)/2"3

vs, ;E - 4. It is obvious that no common parametri-
zation in terms of I simultaneously fits the pattern of

all these four bands. Therefore the extraction of the small
difference éeY from the data is very ambiguous. From a con-
sideration of ;ifferences between the two first members of the
observed Y- bands it seems, however, that the variation of
éng is larger than predicted by our model.

(Thé;e differences can be quite unreliable, however, as seen
from fig. 9.) The well determined value in e is off
the calculation by -3 keV.

The calculated matrix elements of the tensor 3“L(Z as
given by eq. (61) are shown in table 3 together wi;ﬂ the
coliective gyromagnetic ratio 3& used in the calculation,

and the calculated difference 23 Ir for the y- state.
%ulf- correction to ﬂR is of the order 0.0l and
thus comparable to or smaller than the experimental uncertainty
(.01 - 0.03).
The absolute difference '%K‘CRI has been measured in “éEr'

41 43) The calculated value agrees well with the experimental

lak-%R\ X 0.10.

- The gyromagnetic tensor guﬁ is given by the egs. (36)
in terms of the matrix eleme;;s in tables 1 and 3. In order
to test the calculated matrix elements against experiment we

have evaluated the reduced M1 transition probabilities between

the 2% - states, using

DLI +1. D) .
/’((P’H(m) ‘/ht— ( a e (1—"2 [l S o 2)(1_5)'(59)
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The mixing of the three bands considered was tsken into
account in the spproximation of first order perturbation
theory. We used the calculated matrix elements of ~b¢@ and
the empirical energy differences between the 2% states. The
results are shown in table 4.

With a few exceptions our calculated values have the

-y : 2
observed order of magnitude, % [0 GQ/CZﬂi) + In the Hf and
W isotopes our results for the quentity B(H1’ 2¥ - 2,)
agree considerably better with the experimental data than
those obtained by Bés et al. 8). FFor this transition our cal-
culated matrix elements <'2°ll}((ﬂ1)ﬂ22>have also a dominating
negative sign like the observed ones43).

A very detailed fit to the data should not be expected
from the present model, as all the basic matrix elements <hlgﬂ”3|M>
are highly sensitive to the detsiled choice of parameters.,
Furthermore we have neglected the 8pin part of the magnetic
moment operator as well as possible contributions due to pola-
rization effects. Both of these might piay o significant role.
Tnlarization effects could also modify our results for the
2atrix elements of éﬁ%ﬂg . lHere, however, they are probably

minnr important.

Using the same scheme as for the B (M1) we have cal-
culated also the values of B(Ez, Oo'* 2P> « This may be taken
essentially as a test of the RPA wave fu;ctions. The matrix
elements <o | gg!rl(4> were obtained by the standard method
of the RPA, the mnt;ii_element <(;Lg-;fy> taken equal to
2ero, and all intrinsic states assumed té—have a common qua-

drupole moment gf. The latter parameter was taken from ref. 21).
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In accordance with previous investigations49) we found it neces-
sary to use different polerization charges for the (- and the
Y — vibrational mode. The results obtained for e;: - 0.0 and
Ee;M - 0.3 are shown in table 5. It is seen that this choice

leads to a good over-all agrement with the dataf.

T1n rer. 49) e;; = 0.3 was used and found to lead to an
over-estimate of the B(EZ C, > 2 ) values, The discre-
50)

pancy was reduced, when a spln—qu&drupole term was included

in the effective interaction.

The large values of the motrix element <Qs(éth_y§> found

irn the ndiabatic calculation (table 2) might se;m surprising
in the light of the simple interpretation of this matrix ele-~
ment as pronortional to a second derivative of the moment of
inertia. One should note, however, that in the some calculation
the matrix element <:O|é3 ',ﬁ> is also relntively large, only
about 3 times smalier than 2’3. Thus the ratios <c)Léf£._t/§>

VAN and <(gl§3+_ l(5'>/<ole5‘3;_l(s> are actually
comparable, in accordance with a smooth variaiion of the
moment nf inertia. (Note that the direction in the (ﬂ, AIA )=
space, in which the derivatives are taken, differs from the
direction of an adiabatic variation of the coordinate {3

due’to the ‘dynamical treatment of the coordinates ép and 4,..)

9. Conclusion

We have formulated s non-adiabatic, microscopic theory

for the rotation-vibration interaction in well-deformed, even
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nuclei. On the basis of this theory we have calculated various

measurable quantities. A good agreement with the data was found

for the quantities <olh, [/55, and <O(L—"2(Y>l and a quali-
= ] S8, BUHI, 2, 2,)
and B(P“’QI‘)Q")' For the quantities B(ML _2(2 - _2)/)} </5’v.t’l‘2 ;r>‘
and Ay ,

tative agreement for the quéntities

the data are either non-existent or their
interpretation so ambigous that no decisive conclusion can be
drawn. The letter quantity seems, however, to show a larger
variation through the mass region than predicted by our model.

Our comparison with the results obtained within the frome-

work of an adiabntic‘description of the vibrational motion
showed that for the matrix elements <Y«léﬁ&ﬁlv> the adiabatic
value cannot be taken even as a relatively good approximation
to the non-adiabatic one. This seems to indicate that some
precaution must be taken with respect to the believability

of results obtained by adisbatic methods as far as branching
ratios of electromagnetic transitions are concerncd.

The large deviations between the adiabatic and non-adia-
batic results for the matrix elements <?2|é7délv> indicate
also a larger sensitivity to the detailed esssumptions of the
model for these matrix elements than for the matrix elements
<o|§3%Jﬁ> #We have presented here calculations based on the
traditi;nal choice of the pairing plus quadrupole effective
interaction. The inclusion of other terms like e.z. a quadru-
pole-pairing term, a spin-quadrupole term,etc., could probably
modify our results for the matrix elements <zf'é%%@(?>.

In sect. 3 we mede a rather crude approximation for the

)
term hlm. The fact that for the quantity éﬁ/’ the
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inclusion of this term tends to make the agreement with experi-
ments worse rather than the opposite could indicate the neces-
s8ity of a more accurate treatment of this term. An accurate
treatment is possible in principle on the basis of eq. (22¢),
but the practical problems are tremendous. Thus the lowest
order diagrams contributing to the matrix elements <]4fhfuaﬂ\v>
contain six particle lines, and the time order of the vertices

is only partially free.

The present work was initinsted by a prooosal from Prof.
A. Bohr. His continous interest and valuable supgestions
during the work are highly appreciated. Discusaicns with Lr.
G.B. Hagemann on experimental data were extremnely useful in
connection with sect. 8, Ve appreciate also nrofitable dis-
cussions with Prof. B.R. ilottelson and Dr. I. Hamamoto as well
as the financial support throush a Nordita-fellowship in the

period 1971-74.
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Appendix A

(Diagram rules)

The rules of the presently applied version of the Feynmann
diagram language are given below.
An arbitrary example of a diagram is shown in fig. 10.

The particle lines (solid) represent Bogoliubov quasipar-

ticles. In order to evaluate the diagram one assigns a direc-

tion to each closed loop of particle lines, and attpributes an

to each upgoing line, and §“h, = b-Jr

<

operator ékne = E;
to each downgoing line. Each downgoing line and closed loop
contributes to the value of the diagram with the factor ~-1.

An external vertex (short, dashed line) is characterized

by a field operator (cf. sect. 5)_E and a frequency Y . The

sum of external frequencies is always zero., Lach external
vertex contributes in an obvious symbolic notation with the

factor

+ .
Vel"lle)( ( F) = E bc'u\‘(’) [F) bin]% . (70)

If the vertex 1is inserted in a loop with only a single particle
. i .

line, a factor E{ must be added. The constant term in the

expression (56) is associated with a disconnected vertex.,

The interaction lines (long, dashed lines) represent the

residual interaction (45). Each interaction line gives a

factor

. - - 4
M'\le?ﬂchol’l {me = ‘q‘ Z VLK&\,»\ x V(’.t‘{‘ex (btbk)le“’

LK/\(« (71)

X vertex (.Eizb)ﬁﬁk{ .

A diagram obtained by exchanging the end points of two
particle lines between the vertices of an interaction line is
equivalent with the original one.

For each vertical level between the interaction lines
and external vertices the expression for the diagram contains

an energy denominator, given by

tfhe"j(’é d‘QHOM('V\C\"Or' - Z E,: - Z W (72
Crossmg vertices :
lives betow

If two particle lines go between the same two vertices,
either external or belonging to an interaction line, a f'actor é—
must be added.

The value of the diagram is obtained by a summation over
all combination of the single particle quantum numbers J;
assigned to each particle line.

A diagram must not contain an unlinked part without external
vertices, and not a part without external vertices, which is
linked to the rest of the diapram only by a single interaction
line.

In appendix B and C we draw a box to indicate the sum

over a certain class of diagrams, specified in the text.
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Appendix B

(Graphical expressions for matrix elements)
We consider operators of the form

1 1
G=R——h ....A¢

o 7
e , N H oo An (73)

U

where j?o,- ..y

_QN are field operators.

Theorem 1. f;e ground state expectation value <olG o>
is given by the expression in fig. lla, where the sum, repre-
sented by the box, includes all non-equivalent diagrams, which
satisfy the rules of appendix A.

Proof (sketched). In the expression for the expectation

12)

value we insert the Brioullin-Wigner expansion of the

ground state wave function, and make the Taylor expansion
1 1 1 1

= - (Hyeq +AE) ——— + (74)
H - H,-w Ho=co H, ~ o .

Taking all contractions we get linked as well as unlinked
diagrams. Here those diagrams, which have an unlinked part
without external vertices that is entirely above or below the

upmost external vertex, cancel the terms of higher than zeroth

order in.éE in the same way as for the ground state energylzx

Those unlinked parts without external vertices, which cross

the level of the upmost external vertex, give a factor, which
is cancelled by the normalization of the Brioullin-Wigner wave
function. Parts without external vertices, which are linked to

the rest of the diagram by a single interaction line, are

cancelled by the subtracted average term in eq. (45). q.e.d.

i
)
| }
-
i

_.51_

Theorem 2. The matrix element <CIG|2> between the ground

state and an excited state Lb> with energy En is

given by the expression in fig. 11b, where Jﬁ, is the oscil-

lating field of the state. (Eq. (51).) The vertex fﬁ can

have all vertical ('time') positions relative to the vertices

iﬁo,. s e, QN.

The sum, indicated by the box, is restric-
ted by the following rule for the diapgrams included: f;f must
be linked to at least one of the vertices QO)J C e QN)and

it must not be possible to cut it from the rest of the diapram

by the removal of a single interaction line.

Proof. We introduce an auxiliary field operator B and
write

: - 1 ( I

\S(g) z <O'(Q°m91"‘QN"lT—TNQNm~B

1
+ 0, —— L),...f-),,,,1 B n

" H-w, Hov o Howgrw 0 a9
1 1 1
+ ... +B A A Wor T o>
Hrw 0 H-wpew 10 N e >)o

Theorem 1 is used, and the expression for “§0§) thus obtained
written in the form shown in fig. 12. Here an empty box re-
presents a sum of all diagrams, which satisfy the rules of
appendix A, and a box denoted by an 'r' a sum of all diagrams,
which satisfy in addition the rule of theorem 2. It is easily
verified that all possibilities are exhausted by the four
terms in fig. 12. Now we take the residuum for UJ:_gh, From

eq. (75) this is equal to

— <ol Ind>n IRBIo>, (76)




—52 -

In fig. 12 only the third term has a pole for ngl;h originating
in the left hand part of the diagram, which from theorem 1 and

2)

. . 1 . . R
the factorization theorem s 1S equivalent to a vertex with

the frequency w and the field

1 1
= S, P (77
‘ ?;_K,A Voap b b <olbyby H-w glo>.

This expression has from the definition, eq. (51), the residuum

— Fl<n | Blo> (78)

Dividing by <wiB[0> we obtain the desired result. g.e.d.
Theorem 3. The matrix element <MmiGIN) between two

excited states 1is given by the expression in fig. llc, where

1 1 (79)
L A, —A
H-wy-w Ao B H-wymw N

G(u_t) = Qo

and the sum, indicated by the box, is restricted as in theorem 2.
Proof. This goes as the proof of theorem 2, taking the

residuum of the function

5(‘&)) = <o l R E QQ H—'(,u4 Q_' ... QN-1——H_E}N QN
1 1 1
+ Qg H‘_(-_*31*'fr:’ B H"f’,»‘ 91 v v e HN“] H ‘_(t)N QN (80)
1 1 1

® H-w +w fre A H- oy ~w Bl H- €y

Fé* are mutually

Diagrams, where F;1 and

for w= C

-

Bl

-53_

but disconnected from the vertices Eo,... QN

) -

connected,
are excluded by the factorization theorem in connection with

the free time positions of _EM and FHT.

Appendix C
(RPA equations for the oscillating field.)

From theorem 2 (appendix B) the oscillating field =

satisfies the equation in fig. 13a, where the box denoted by an

'r' represents the restricted sum of diagrams specified in the

theorem. This equation determines the energy £ and the

field .E” withir a normalization. We undersfé;é in this
appendix everywhere an arbitrary time order of the external
vertices in all diagrams considered.

The normalization is given by the equation in fig. 13c.
This is derived from the identity in fig. 13b, where the empty
box represents a sum of all diagrams, which satisfy the rules

of appendix A. With external vertices A and B the empty box

is thus equal (theorem 1 and the arbitrary time order) to

1
<o QF—TJ B+B~H1T;—Q{o>' (81)

Taking the residuum at ¢tc = £, and dividing by I<C"EE_\Q>iZ
we obtain fig. 1l3c.

The equation in fig. 13a can be written as shown in fig.
lia, where the first term on the right hand side is the bubble
diagram corresponding to the model space of two-quasiparticle
excitations considered, and the second term contains all other .

contributions to the sum 'r'. Iterating the equation in
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fig. l4a we obtain fig. 14b. Here the double dashed line is

the effective interaction of the RPA, defined in fig. 1luc.

Taking the derivative of fig. luc with respect to (C
we get fig. lud. Using the eqs. in fig. 1l4b and 13c we obtain
fig. 1lue.

In the RPA the effective interaction is assumed frequency

independent. Then the second term on the left hand side of
fig. l4e vanishes.
An effective interaction with separable terms is written

symbolically as
. . i
Hetp = - lZ)(, CQ(;*QF . (82) :

This expression is understood to have the following meaning:
For each term the fields C}* and C# act respectively
as the left and right hand field of the double dashed line
(cf. eq. (71)), and the line itself contributes with the
factor %@ to the value of the diagram, in which it appears.
Thus the figs. 14b and l4e are equivalent with eqs. (53) and

(54).

Appendix D

(Theorem on loop diagrams. Derivatives with respect to a

variation of F{o.)

From theorem 1 (appendix B) and the factorization theoreml2)
asum S of loop diagrams like those in fig. 1 with an arbi-

trary time order of the external vertices (EL’E%)>' . (QN)QJN)
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can be written

1 1

PO -+ ey PRy
Q

S= <2A Recay

Wy + W)
1 1

Plks-1) Ho= opgu)

cev Fpeay”

- - (N)
Ho Cpin- 1y TP P /

where lz is an arbitrary permutation of 1,- -.,[Y, and <

denotes the expectation value in the quasiparticle vacuum. From

the definition, eq. (60), eq. {83) can also be written ss

e e e+ NI

~ — ??

5 = < ; me) mP(z) . Moo Hoc >, (84)
where the sum of frequencies is assigned to a product of
operators. We shall prove

T T e T
- AN
- P - ; .
= < A [Ny ar oL \
S % ( i, LBy, L o D%, AN .,..,‘,.}// (85)

' .
where P is an arbitrary permutation of to (N
Proof. Note first that from the algebraic identity

! f /“'+.'_)
Xy X+ Y L 4 (88)

1

we get

~

~ o~ fﬂ—’\\
XY = XYy + XY (87)

s
for arbitrary operators >( and Y . This implies especially

<(>T’Y+X‘?)> = \/[HD,QQ]> = 0, (88)
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Let us consider the case N= q, which will bring us through
all steps of the general proof. From eq. (88) we get

Y
< LA, A, 18, R,1]>

S S
= < (A, [R,,00,,0,37 + A,(A,, A0, (89)
X P

+ 0,0, A, A, + 0,0, 0>

We name the four operators in the latter expression _X1 ,2(2, X

23y
and X "

— )

and understand in the following a summation over
]
the permutations P so that we can interchange arbitrarily

the fields Q,‘, F):,_) and 93 . Thus we have, using eq.
(87),

T
X1+X2 h X1 M 91 [HS)Q%sz*[QS;QH] (:)2

2 1
TR TR

= A A, A Ay + Ay A, AlAy = Xg+X3.(90c)
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Summing up we get

X1+X2+X3+Xq Xq"'X;,“"Xq“'/\(ga

(91)

[}
With the summation over E the expectation value of the
right hand side is seen to equal just the expression (84).
g.e.d.

We note that

H

. N\ +
<LQ,B]> G(H}B,@)) (92)
where (s is the frequency of the vertex E '

In sect. 6 we consider derivatives of loop diagrams with

respect to a variation of Ho Let such a variation be written

Mo = H, — 3H, . (93)
As

DI —F_j: (SH, - <f§Ho>>>} (9u)
and

!—107—_@ = H;w (§H, ~ <’éH°>)_H;T (95)

(taking into account the variation of the vacuum energy),
it is obvious that the variation of the expression (83) is
obtained by inserting simply the field _é_Ho with the frequency

zero into the particle lines of the loop in all possible
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ways, with all possible time orders and making a summation. , References
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

1

10
11
12
13

14

a) Matrix element of 8'3’1‘& between the ground state
and an excited state.

b) Matrix element between two excited states.

Graphical representation of the cranking formula.

Quadrupole coupling constants obtained by a fit to

the empirical energies. Crosses: B-vibration. Circles:

y-vibration. Dashed lines: The expression (68) with

p =50 Mev fm 4, 8 = 0.3.

The matrix element <©| h°”3> . Explanation in the

text. V

The matrix element <O Lb_2|y>. Explanation in the

text.

The matrix element <(3[h_,|[>. Explanation in the

text.

The quantity <F’”’° ](3> — (olb,,lo) . Crosses:

experiment. Circles: Calculation of ref.7). Further
explanation in the text.
The quantity <Y | h°\r> — <olh, 10> . Explanation

in the text.
2y
Plot of (EI'°§I_1)/(ZI)VS. I for four y-bands.
The arrow on the ordinate axis indicates (1/(23¢f))
Example of a diagram.
Illustrations to the theorems 1-3.
Illustation to the proof of theorem 2.
Illustration to appendix C.

Illustration to appendix C.
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